
LLNL-CONF-663150

Identifying the Culprits behind
Network Congestion

A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain, T.
Gamblin, P. T. Bremer, M. Schulz, L. V. Kale

October 22, 2014

29th IEEE International Parallel & Distributed Processing
Symposium
Hyderabad, India
May 25, 2015 through May 29, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Identifying the Culprits behind Network Congestion
Abhinav Bhatele†, Andrew R. Titus∗, Jayaraman J. Thiagarajan†, Nikhil Jain§, Todd Gamblin†,

Peer-Timo Bremer†,‡, Martin Schulz†, Laxmikant V. Kale§

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA
∗Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA

§Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
‡Center of Extreme Data Management, Analysis and Visualization, University of Utah, Salt Lake City, UT

E-mail: †{bhatele, jayaramanthi1, tgamblin, ptbremer, schulzm}@llnl.gov, ∗atitus@mit.edu, §{nikhil, kale}@illinois.edu

Abstract—Network congestion is one of the primary causes
of performance degradation, performance variability and poor
scaling in communication-heavy parallel applications. However,
the causes and mechanisms of network congestion on modern
interconnection networks are not well understood. We need new
approaches to analyze, model and predict this critical behavior
in order to improve the performance of large-scale parallel
applications. This paper applies supervised learning algorithms,
such as forests of extremely randomized trees and gradient
boosted regression trees, to perform regression analysis on
communication data and application execution time. Using data
derived from multiple executions, we create models to predict
the execution time of communication-heavy parallel applications.
This analysis also identifies the features and associated hardware
components that have the most impact on network congestion and
in turn, on execution time. The ideas presented in this paper have
wide applicability: predicting the execution time on a different
number of nodes, or different input datasets, or even for an
unknown code, identifying the best configuration parameters for
an application, and finding the root causes of network congestion
on different architectures.

Keywords-interconnection network, congestion, root cause, ma-
chine learning, modeling, performance prediction

I. MOTIVATION AND IMPACT

Network congestion is widely recognized as one of the
primary causes of performance degradation, performance vari-
ability, and poor scaling in communication-heavy applications
running on supercomputers [1], [2], [3], [4], [5]. However, due
to the complex nature of interconnection networks, as well as
message injection and routing strategies, network congestion
and its root causes in terms of network resources and hardware
components are not well understood. This makes the problem
of mitigating and avoiding network congestion difficult. It
also complicates the task of writing congestion-avoiding and
congestion-minimizing algorithms for communication and task
mapping. Therefore, we need new approaches to understand
and model network congestion in order to improve the perfor-
mance of large-scale parallel applications.

When a message is sent from one node to another, it is split
into packets that pass through many resources and hardware
components on the network. A packet starts in an injection
FIFO on the source. It then passes through multiple network
links and receive buffers on intermediate nodes before it finally
lands in the reception FIFO on the destination. When shared

by multiple packets, any or all of these network components
can slow down individual flits, packets and messages. This
paper aims to identify the hardware components that affect
the performance of a message send the most.

Our approach is based on using supervised machine learn-
ing to build models that map from independent variables,
representing different network hardware components, to a
dependent variable – the execution time of the application.
We only consider computationally balanced, communication-
heavy parallel applications and, hence, focus on the com-
munication fraction of the total execution time. In order to
generate multiple different executions of a parallel application,
we vary the placement or layout of application processes/
tasks on the network. The different task mappings result in
different message flows on the network and different execution
times. This allows us to measure network hardware counters
and execution times for the same executable under different
configurations and network conditions.

Using supervised learning algorithms such as forests of ex-
tremely randomized trees [6] and gradient boosted regression
trees [7], we perform regression analysis on communication
data, derived from network hardware counters and analytical
modeling, and the corresponding execution time. In addition to
predicting the execution time for new samples, this analysis
also identifies the features and associated hardware compo-
nents that have the most impact on network congestion and in
turn, on the execution time.

Sukhija et al. use supervised learning algorithms to select
the best dynamic loop scheduling algorithm for parallel loops
to improve on-node performance [8]. Tallent et al. use mea-
surement and modeling to diagnose the cause of end-point con-
tention for one-sided messages [9]. In our previous work [10],
we presented a preliminary study on predicting the execution
time and relative performance of different task mappings using
forests of randomized trees [11]. This paper builds on our
previous work and makes the following contributions:

• We exhaustively search all possible combinations of
features using several supervised learning techniques to
identify those that lead to the best predictions.

• Using different thresholds for a quantile loss function,
we show that different features are important in different
performance regimes, i.e., in fast vs. slow executions.

• We analyze the relative impact of different features on
predicting execution times to identify hardware compo-
nents that contribute the most to network congestion.

• We demonstrate our technique using various communi-
cation kernels as well as two scalable, communication-
heavy applications, MILC [12] and pF3D [13].

The prediction techniques presented in this paper are widely
applicable to a variety of scenarios, such as, (1) creating offline
prediction models that can be used for low overhead tuning de-
cisions to find the best configuration parameters, (2) predicting
the execution time in new setups, e.g., on a different number
of nodes, or different input datasets, or even for an unknown
code, (3) identifying the root causes of network congestion on
different architectures, and (4) generating task mappings for
good performance.

II. POTENTIAL ROOT CAUSES OF NETWORK CONGESTION

When messages travel over the interconnection network,
they are broken into smaller units: packets, chunks and flits.
These pass through various hardware components, any or all of
which can delay the communication [10]. We briefly explain
the hardware components and the measurements that we would
need to evaluate contention on each of them (see Table I).

TABLE I
HARDWARE COMPONENTS POTENTIALLY RELATED TO NETWORK

CONGESTION AND THEIR CORRESPONDING INDICATORS

Hardware resource Contention indicator

Source node Injection FIFO length
Network link Number of sent packets
Intermediate router Receive buffer length
All Number of hops (dilation)

At the source node, a message is split into several packets
that are enqueued in network injection FIFOs (there are several
FIFOs per node). Depending on the algorithm used to assign
packets to injection FIFOs, there may be contention for these
FIFOs among packets of one or multiple messages. From
the injection FIFOs, packets are transferred to network links,
which are typically shared by many messages when multiple
routes pass through the same links. When multiple messages
share the same links, the effective bandwidth is less than the
peak due to link contention.

Packets may stall on a router because the next link is busy
or because the destination node is unable to process incoming
packets at their arrival rate. When this happens, routers store
packets temporarily in receive buffers. Stalled packets may
cause congestion when these buffers become full. Finally, each
intermediate component that a message passes through along
its route increases the chance of network congestion. So, the
number of hops a message travels, also referred to as dilation,
can also be an important indicator of congestion.

III. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we describe the process of gathering and
preparing the input data for machine learning, the communi-
cation kernels and applications we use, and the step-by-step

methodology we have developed to apply supervised learning
algorithms to train our models.

A. Gathering data for supervised learning

The goal of this paper is to find correlations of network
and communication related metrics with application execution
time. In machine learning terms, the metrics are features,
or inputs to machine learning algorithms, and the execution
time is the dependent variable. Our dataset thus consists of a
tuple of features and the execution time for each experiment,
which is called a sample in machine learning. Each sample or
experiment is a single run of the application.

We use the technique of task mapping to create a dataset
of several samples for each application that is large enough
to be statistically meaningful. Task mapping allows us to
change the placement of application processes on the network,
thereby changing the flow of messages and the corresponding
execution time. This allows us to collect network hardware
counters and execution time for different configurations of
running the same application executable.

In this paper, we focus on torus interconnects, in particular,
on the five-dimensional (5D) torus network, which provides an
interesting experimental testbed to study the effects of network
congestion. All the experimental data for this study has been
collected on Vulcan, an IBM Blue Gene/Q installation at
LLNL. We use Rubik [14] to generate many different task
mappings of the code running on a 5D torus.

TABLE II
LIST OF COMMUNICATION METRICS (FEATURES) USED AS INPUTS TO THE
MACHINE LEARNING MODEL. THE COLORS IN THIS TABLE CORRESPOND

TO DIFFERENT HARDWARE COMPONENTS IN TABLE I

Feature name Description

avg dilation AO Avg. dilation of average outliers (AO)
max dilation Maximum dilation
sum dilation AO Sum of dilation of AO

avg bytes Avg. bytes per link
avg bytes AO Avg. bytes per link for AO
avg bytes TO Avg. bytes per link for top outliers (TO)
max bytes Maximum bytes on a link
#links AO bytes No. of AO links w.r.t. bytes

avg stalls Avg. receive buffer length
avg stalls AO Avg. receive buffer length for AO
avg stalls TO Avg. receive buffer length for TO
max stalls Maximum receive buffer length
#links AO stalls No. of AO links w.r.t. recv buffer length

avg stallspp Avg. number of stalls per rcv’d packet
avg stallspp AO Avg. no. of stalls per packet for AO
avg stallspp TO Avg. no. of stalls per packet for TO
max stallspp Maximum number of stalls per packet
#links AO stallspp No. of AO links w.r.t. stalls per packet

max inj FIFO Maximum injection FIFO length

Based on the list of hardware components that could con-
tribute to network congestion (Table I), we gather communi-
cation data from three network hardware counters: the number
of packets sent on each link, the receive buffer length and the

TABLE III
SIZES OF THE INPUT DATASETS IN TERMS OF THE NUMBER OF EXECUTIONS OR SAMPLES FOR THE DIFFERENT CODES

2D Halo 3D Halo Sub A2A MILC pF3D Total
#Nodes 16 KB 4 MB 16 KB 4 MB 16 KB 4 MB

1024 84 84 84 84 84 84 208 94 806
4096 84 84 84 84 84 84 103 103 710

Total 168 168 168 168 168 168 311 197 1516

number of packets received on each link. We use analytical
modeling to obtain data for two other sources: the injection
FIFO length and the dilation for each message. Data from
these five sources is broken down into nineteen features and
grouped into five categories denoting the source: dilation,
bytes, stalls, stallspp, injFIFO (see Table II). The receive buffer
length is referred to as stalls in the rest of the paper because
it indicates the number of times different packets are stalled
on intermediate nodes. Stallspp refers to the average number
of stalls observed per packet.

The raw data we obtain for each execution is gathered per
link in the network. To train our models, we require a single
value for each feature aggregated over all the links. To achieve
this, we use aggregates such as the average or maximum value
of a feature over all links. We also consider a smaller subset
of links from the distribution, such as only those with a value
greater than the mean (average outliers or AO), or those that
are in the top 5% of the distribution (top outliers or TO). This
helps us create several different aggregated features for each
source or hardware component from which we obtained raw
data. In the end, each execution (one sample) is represented by
the nineteen features shown in Table II and a corresponding
execution time.

B. Description of parallel codes used

We use three different communication kernels and two
scalable, communication-heavy, production applications for
the analysis in this paper. A brief introduction to each is
provided below:

Five-point 2D halo exchange: The 2D Halo communication
kernel uses a 2D grid of MPI processes to exchange four
messages with two neighbors in each dimension.

15-point 3D halo exchange: The 3D Halo communication
kernel uses a 3D grid of MPI processes to exchange fourteen
messages with its near-neighbors (six faces and eight corners).

All-to-all over sub-communicators: The Sub A2A communi-
cation kernel also uses a 3D process grid but performs all-to-
alls on sub-communicators of size 64, formed from processes
in one of the three dimensions.

MILC: MILC [12] is a Lattice Quantum Chromodynamics
(QCD) application that does near-neighbor exchanges over a
4D process grid, similar to 2D and 3D Halo.

pF3D: pF3D [13] is a laser-plasma interaction code that

performs all-to-alls over sub-communicators (similar to Sub
A2A) and near-neighbor exchanges over a 3D process grid.

The communication kernels are executed with two different
message sizes – 16 KB and 4 MB to evaluate different MPI
performance regimes. The computational load of both MILC
and pF3D is almost perfectly balanced across MPI processes.
This allows us to focus on their communication, which is a
significant portion of their overall execution time. We ran all
the codes on 1024 and 4096 nodes of Blue Gene/Q to study
the congestion behavior on different torus sizes. Depending on
the code, we placed between 16 and 64 processes per node.

Table III lists the number of task mappings that were gen-
erated for each kernel or application at each node count. For
example, for 2D Halo, we created 84 different task mappings
and ran them for the two message sizes – 16 KB and 4 MB
(168 in total). Added across all the communication kernels,
we had 1008 different executions (84 per dataset over twelve
datasets) and for the two applications, we had 508 executions
(in four datasets). Section IV describes the process of splitting
the individual datasets into training and testing sets.

C. Learning predictive models

Building a non-parametric regression model from data is a
common task in machine learning applications. In theory, a
domain expert specifies an appropriate model and its param-
eters are suitably adjusted based on observed data. However,
in practice, we lack the knowledge of an underlying model
for real applications. Hence, it is typical to infer models
directly from data, which requires that supervised data with the
desired target variables be prepared beforehand. A variety of
such data-driven modeling algorithms have been proposed in
the machine learning literature [15], [16], and these methods
provide a single, “strong” predictive model with good gen-
eralization characteristics. An alternative approach is to infer
an ensemble of relatively “weak” models to obtain a stronger
ensemble prediction [17].

Ensemble methods: The primary reasons for considering en-
semble models are: (1) Statistical: different predictive models
may perform similarly on the training data, when learned
from a limited number of training samples. However, the
performance of each of these models with test data can be
poor. By averaging representations obtained from an ensemble,
we may obtain an approximation closer to the true test data;
(2) Computational: even with large training sets, the modeling
technique might not reach the global optimum and using an

ensemble of multiple locally optimal models can result in
improved performance; (3) Representational: the hypothesis
space assumed for learning the model cannot represent the
test data, and this can happen when the data is corrupted.

In our previous work [10], we adopted one such approach,
extremely randomized trees [6], for predicting execution time
based on the communication data. This algorithm builds
a forest of decision trees using a top-down approach that
progressively partitions the input space into regions where the
output is constant. Rather than using a bootstrap of samples,
this method uses the whole training set and splits nodes by
choosing attributes and cut-points at random.

In this paper, we experimented with a broad class of
regression techniques, including support vector machines,
ridge regression, Bayesian ridge regression, decision trees,
and ensemble learning approaches such as random forests
and gradient tree boosting. Extensive evaluation (using cross-
validation) of the methods on all our datasets showed that
extremely randomized trees and gradient boosted regression
trees [7] performed consistently better than the other methods.
We use the Python-based scikit-learn package [18] for our
analysis, which provides the ExtraTreesRegressor and
GradientBoostingRegressor classes.

Gradient boosted regression trees: The main idea of boosting
is to add a new weak, base-learner model in each iteration,
which is trained with respect to the error of the whole
ensemble inferred so far. In gradient boosted regression trees
(GBRT) [7], the new base-learners are designed to be maxi-
mally correlated with the negative gradient of the loss function
associated with the whole ensemble. This technique is flexible
enough to be used with different families of loss functions, and
this choice is often influenced by the desired characteristics of
the conditional distribution, such as robustness to outliers. Any
arbitrary loss function can be plugged into the framework by
specifying the loss function and the function to compute its
negative gradient [19]. The squared `2 loss and the Laplacian
`1 loss are common choices for regression tasks and these
functions penalize large deviations from the target outputs,
while ignoring smaller residuals. In addition, parameterized
loss functions, such as Huber, can be adopted for robust
regression. Given the input variable x, the target output y and
the regression function f , the Huber loss is defined as

ΨH(y, f(x)) =

{
1
2 (y − f(x))2 |y − f(x)| ≤ δ,
δ(|y − f(x)| − δ/2) |y − f(x)| > δ.

(1)

As it can be observed, Huber loss combines `1 and `2
functions. The parameter δ is the cutting-edge parameter, and
this specifies the maximum value of error beyond which the `1
function is applied. Alternatively, we can predict a conditional
quantile of the target variable for robust regression. This can be
achieved by considering the asymmetric quantile loss function:

ΨQ(y, f(x)) =

{
(1− α)|y − f(x)| y − f(x) ≤ 0,

α|y − f(x)| y − f(x) > 0.
(2)

The parameter α specifies the desired quantile of the condi-
tional distribution. When α = 0.5, the quantile loss function
corresponds to the `1 loss. Figure 1 illustrates the Huber and
quantile loss functions at different parameter values.

Fig. 1. Parameterized loss functions for gradient tree boosting: Huber loss
function with the cutting-edge parameter δ (left), quantile loss function (right)

D. Predicting execution time using different features

There are nineteen features that represent each sample in
our input datasets (Table II). Individual features do not lead to
good predictions [10], so we need to find the best combination
of features for every dataset that leads to the highest prediction
scores. An exhaustive search over all possible combinations
requires running the boosting algorithm 219 − 1 = 524, 287
times. Each invocation of the algorithm takes about a second,
and doing this for even a single dataset would take roughly six
days. To overcome this problem, we exploit the ability to run
each combination independently. We use pyMPI to divide the
work of trying different feature combinations among parallel
processes. For these parallel runs, we used Sierra, an Intel
Xeon cluster at LLNL. We used 64 nodes (12 cores per node)
for each parallel run, bringing the execution time down to
under five minutes.

To summarize, these are the steps we follow for learning a
model and predicting execution time for an individual dataset:

• Scale each feature in the dataset to have values between
0 and 1 based on the minimum and maximum values for
that feature across all samples.

• Divide the n samples in the dataset into a training set and
a testing set, roughly in a two-thirds and one-third split.

• Generate all possible combinations of the nineteen fea-
tures that we would like to learn a model with.

• Do a parallel run where each process runs the GBRT
regressor on a subset of feature combinations and reports
the prediction scores using the generated models.

• Based on the prediction scores, we pick the feature
combinations that lead to the highest scores.

Below, we define the prediction criteria or scores we use
to evaluate and compare different learning methods, loss
functions and feature combinations.

Evaluation criteria: In order to evaluate and compare differ-
ent regression models, we consider two different performance
scores: the Kendall rank correlation coefficient (RCC) [20],
and the coefficient of determination, also referred to as the

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 4K 1K 4K 1K 4K 1K 4K 1K 4K

Pr
ed

ic
tio

n
sc

or
e

RCC and R2 (Extremely Randomized Trees)

16KB RCC 16KB R2 4MB RCC 4MB R2 RCC R2

pF3DMILCSub A2A3D Halo2D Halo

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1K 4K 1K 4K 1K 4K 1K 4K 1K 4K

RCC and R2 (GBRT, Huber loss function)

pF3DMILCSub A2A3D Halo2D Halo

Fig. 2. Highest prediction scores obtained for the individual datasets using Extremely Randomized Trees (left plot) and Gradient Boosted Regression Tree
(right plot). Adjoining pairs of vertical bars represent the RCC and R2 values for each of the sixteen datasets.

R2 statistic. The RCC score measures the degree of simi-
larity in the rankings of two datasets ({x1, x2, · · · , xn} and
{y1, y2, · · · , yn}), and can be defined as

RCC =
(∑

0<=i<n

∑
0<=j<i

concordij

)
/(
n(n− 1)

2
)

concord ij =

1, if xi >= xj & yi >= yj

1, if xi < xj & yi < yj

0, otherwise

The RCC score assumes the value 1 when the two rankings
completely agree, while the value 0 indicates complete dis-
agreement. The coefficient of determination is another popular
statistic that measures how well a statistical model fits the data.

R2(y, ŷ) = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

where ŷi is the predicted value of the ith sample, yi is the
corresponding true value, and

ȳ =
1

nsamples

∑
i

yi

denotes the sample mean of the observed data. We use the
RCC score to compare the rankings of the true and predicted
values in the testing set and R2 to compare the true and
predicted values of the samples directly.

IV. PREDICTION ON INDIVIDUAL DATASETS

We begin by using supervised learning to predict the execu-
tion time based on communication features, and we evaluate
the prediction accuracy. We take the sixteen datasets shown
in Table III, and we learn models for each one independently
using all possible combinations of input features.

Figure 2 shows the highest prediction scores (both RCC
and R2) obtained for any feature combination for each of
the sixteen datasets. Adjoining pairs of vertical bars represent
the RCC and R2 values for each of the sixteen datasets.
The left plot illustrates results obtained using the extremely
randomized trees algorithm, and the right plot shows similar

results using GBRT with the Huber loss function. Though
either of the methods can be used for subsequent analysis, we
choose GBRT for the results in the rest of the paper because
of its flexibility in allowing parameterized loss functions.

The first thing to observe in Figure 2 is that on an average,
the prediction scores are very high, which suggests that the
communication data and execution time for our datasets are
highly correlated. When predicting the execution time of 2D
and 3D Halo, we obtain RCCs in the range 0.95 − 1.0 and
R2 in the range 0.94 − 0.996. A trend that is not quite
discernible from the plots is that, as we increase the amount of
communication being performed (from 2D Halo to 3D Halo
to Sub A2A), the predictions become stronger. For Sub A2A,
the RCC and R2 values are between 0.997 and 1.0. This is not
unexpected – the more a parallel code stresses the network,
higher is the correlation between the communication features
that represent congestion and execution time.

Even for production applications, which have more complex
communication patterns, we observe very high prediction
scores. MILC, which performs a 4D halo, is communication-
heavy and task mapping sensitive. Other than the RCC scores
on 1K nodes, the prediction scores for MILC are very high
(R2 between 0.98 and 0.999). pF3D has communication
patterns similar to Sub A2A along with a near-neighbor
communication, which results in high RCC values between
0.975 and 0.991. This can be attributed to the structured and
communication-intensive all-to-all operations whose execution
time is heavily dependent on network congestion.

The prediction scores for pF3D have improved considerably
compared to our previous work. On 1K nodes, the R2 values
have improved from 0.93 to 0.995. On 4K nodes, previously,
our best RCC scores for pF3D were around 0.75 and R2

scores were close to 0. Now, both the scores are in the range
0.975−0.996, which is a significant improvement. This is due
to the removal of a performance bug in the code, which helps
focus the performance on communication properties, and also
in part, from the use of an exhaustive search to find the best
possible combination of features.

As we compare the prediction quality of the supervised

 0

 0.2

 0.4

 0.6

 0.8

 1

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

1K 4K 1K 4K

R
an

k

 2D Halo 3D Halo Sub A2A MILC pF3D

Feature ranks for RCC (GBRT, Huber loss function)

Dilation Bytes Stalls Stallspp InjFIFO

 0

 0.2

 0.4

 0.6

 0.8

 1

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

16KB
1K

4MB
1K

16KB
4K

4MB
4K

1K 4K 1K 4K

 2D Halo 3D Halo Sub A2A MILC pF3D

Feature ranks for R2 (GBRT, Huber loss function)

Fig. 3. Ranks of different features in the models that yield the highest RCC (left plot) and R2 scores (right plot) for individual datasets using Gradient Tree
Boosting (loss function = ‘Huber’). Each stacked bar represents the ranks of the nineteen features (colored by categories) for one of the sixteen datasets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.855 0.855 0.855 0.856 0.856 0.858 0.859 0.862 0.863 0.865

R
an

k

RCC

Feature ranks for RCC (Train: 1K data, Target: 4K data)

Dilation Bytes Stalls Stallspp InjFIFO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.657 0.658 0.659 0.66 0.661 0.663 0.668 0.668 0.671 0.673

R2

Feature ranks for R2 (Train: 1K data, Target: 4K data)

Fig. 4. Ranks of different features for the top twenty RCC (left plot) and R2 scores (right plot) when using the 1K nodes data to predict the 4K nodes data
using GBRT (the top twenty scores are shown in each case using one stacked bar each)

learning models for different codes, a natural question that
comes up is – which features are important in predicting the
execution time for different kernels and applications? Figure 3
presents the relative importance or ranks of different features
in the models that yield the highest RCC (left plot) and R2

values (right plot). Each stacked bar represents the ranks of the
nineteen features (colored by categories) for one of the sixteen
datasets. As we can see, the relative importance of features
changes depending on the code and on whether RCC or R2 is
being considered. The only conclusive observation that can be
drawn from these plots is that the number of bytes flowing over
the network has a significant impact on execution time, which
is to be expected. Ideally, we would like to identify a smaller
subset of features that can predict the execution time well for
a range of applications, message sizes and node counts. We
discuss this in detail in Section VI.

V. GENERALIZATION CHARACTERISTICS

In this section, we analyze the possibility of using the data
gathered for a few different codes to predict novel scenarios or
applications. The idea is to test if we can apply this approach
to predict the execution time in new setups, e.g., on a different
number of nodes, or different input datasets, or even for an

unknown code – one we have not measured directly yet. We
try two different prediction scenarios for understanding the
generalization characteristics of our approach.

TABLE IV
BEST PREDICTION SCORES FOR GENERALIZATION EXPERIMENTS

Training set Testing set RCC R2

All 1K samples All 4K samples 0.865 0.673
All kernels MILC (1K + 4K) 0.772 0.0
All kernels pF3D (1K + 4K) 0.874 0.0

In the first scenario, we combine the sixteen datasets by
node count into two groups and use the 1K-node data for train-
ing and the 4K-node data for testing. In the second scenario,
we group the datasets by kernels and production applications,
i.e., the twelve datasets for communication kernels combined
together are used for training and the four application datasets
are used for testing. Table IV shows the best prediction scores
we obtain for the different cases by performing an exhaustive
search on feature combinations. The network dimensions of
the 5D torus and the congestion behavior can be very different
on 4K nodes from that on 1K nodes. Even so, the models are
able to predict the execution time on 4K nodes reasonably well

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.768 0.769 0.769 0.769 0.769 0.769 0.769 0.77 0.77 0.772

R
an

k

RCC

Feature ranks for RCC (Train: Kernels, Target: MILC)

Dilation Bytes Stalls Stallspp InjFIFO

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.871 0.871 0.871 0.871 0.871 0.872 0.872 0.873 0.873 0.874

RCC

Feature ranks for RCC (Train: Kernels, Target: pF3D)

Fig. 5. Ranks of different features for the top twenty RCC scores when using the kernels data to predict the execution time for MILC (left plot) and pF3D
(right plot) using GBRT (the top twenty scores are shown in each case using one stacked bar each)

using samples from 1K nodes. We achieve a RCC of 0.865 for
the best feature combination and a R2 value of 0.673. Figure 4
shows the trend of the relative feature importance (rank) as we
obtain higher RCC (left plot) and R2 scores (right plot). Note
that feature combinations for the top twenty scores are shown
in each case using one stacked bar each. Similar to Figure 3,
we can see that bytes on the link is a prominent feature again.
Injection FIFO length also shows up as consistently important
for high RCC scores (left plot).

The even more interesting scenario is when we use a dataset
created from communication kernels to predict production ap-
plications. The dataset from all kernels combined together may
or may not include samples that represent application behavior.
Table IV shows that the RCC value for predicting pF3D’s
performance is high and that for MILC is also reasonable
(0.772). The R2 scores are 0 when using the communication
kernels to predict the execution time for applications. This is
an artifact of applying scaling to the datasets before learning
the model. Instead of scaling, if we apply standardization
on the training and testing sets, we would expect decent R2

values. The feature importance plots for MILC and pF3D
(Figure 5) show that different features are relatively more
important for the two applications. In the case of MILC,
dilation and stall-based features are more important whereas
in the case of pF3D, network bytes is the most important
followed by stall-based features. As stated in the previous
section, the ideal situation would be to identify a subset of
features that yields high correlations for a variety of scenarios.

VI. IDENTIFYING RELEVANT FEATURE SUBSETS

The variability in the importance (rank) of different features
in the regression models learned for different parallel codes
makes it challenging to identify a common set of factors
that contribute the most to network congestion. Further, some
of the features considered in our analysis might be strongly
correlated to one another, thereby introducing instabilities in
the model selection process across multiple datasets. In order
to overcome these challenges, we propose to infer regression
models under different quantiles, and analyze them to identify

the most relevant features in a stable manner (irrespective
of our choice of training sets). In addition to revealing the
hardware components that are the main culprits behind net-
work congestion, this analysis can also provide insights about
applications not directly measured and analyzed in this paper.

��

����

����

����

����

����

����

����

�� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
��
��
�

����������������������

������������������������

������������
������������

Fig. 6. GBRT regression on the Apps dataset using different quantile loss
functions. The lower quantile regression function underpredicts for samples
with high execution time, while predicting effectively for those with low
execution times.

A. Feature selection from extreme quantiles

For the analysis presented in this section, we use GBRT
with the quantile loss function defined in equation (2) in
Section III-C. In order to identify the most relevant features
for predicting execution time, we propose to analyze the
regression models at lower (α = 0.1) and higher (α = 0.9)
conditional quantiles. In particular, we consider the ranks
of the different features at the extreme quantiles. Instead
of inferring a single regression function that minimizes the

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

te
s

#li
nk

s A
O

 by
te

s

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

R
an

k
Feature subset selection based on Kernels

0.1 quantile 0.9 quantile

0

0.1

0.2

0.3

0.4

av
g d

ila
tio

n A
O

max
 di

lat
ion

su
m di

lat
ion

 A
O

av
g b

yte
s

av
g b

yte
s A

O

av
g b

yte
s T

O

max
 by

te
s

#li
nk

s A
O

 by
te

s

av
g s

tal
ls

av
g s

tal
ls

AO

av
g s

tal
ls

TO

max
 st

all
s

#li
nk

s A
O

 st
all

s

av
g s

tal
lsp

p

av
g s

tal
lsp

p A
O

av
g s

tal
lsp

p T
O

max
 st

all
sp

p

#li
nk

s A
O

 st
all

sp
p

max
 in

j F
IFO

Feature subset selection based on Apps

0.1 quantile 0.9 quantile

Fig. 7. Ranks of different features obtained using GBRT with quantile loss functions at α = 0.1 and α = 0.9 respectively: left plot is for a combined set
of the three communication kernels (twelve datasets) and the right plot is for a combined set of the two applications (four datasets).

average or median error for all data samples, the quantile loss
weights different regions in the function space asymmetrically
(see Figure 1). For example, in Figure 6, the lower quantile
model provides an accurate prediction for samples with low
execution times (bottom left corner), while making large errors
on samples with high execution times.

It turns out that for the datasets used in this paper, optimiz-
ing for the conditional quantiles inherently promotes sparsity
in the inferred model (Figure 7). This means that only a few
features show significant importance for prediction, and the
ranks of different features vary considerably in the case of
lower versus higher quantiles. This results in different features
being more important for the two quantiles. Figure 7 shows the
feature importance for the extreme quantiles for all the kernel
datasets combined together (left plot) and all the application
datasets combined together (right plot). In the left plot, we see
that the features avg bytes and avg stalls AO have a high rank
only when predicting at the higher quantile. On the other hand,
the feature avg stallspp is prominent in predicting at the lower
quantile and not used by the regression function optimized for
the higher quantile. In the right plot, we can observe similar
things about sum dilation AO, max inj FIFO, #links AO bytes
and avg stallspp.

We exploit these observations by selecting the most relevant
features from the models at different quantiles, and using this
subset of features to predict the execution time for different
applications. The steps involved in this proposed technique for
feature selection for a dataset are as follows:

• Create random splits of the dataset into training and
testing sets (70% for training and the rest for testing).

• Learn regression models using GBRT with quantile loss
functions at α = 0.1 and α = 0.9. We denote the feature
ranks in the two cases by τ0.1 and τ0.9 respectively.

• Repeat the above steps 50 times to avoid overfitting
and compute the average feature ranks for the extreme
quantiles from the 50 iterations.

• Identify the relevant features as those with either τ0.1
or τ0.9 greater than a pre-defined threshold t. In our
experiments, we fixed t at 0.1.

B. Results and discussion

We employ the feature selection technique explained above
on the following larger datasets formed by combining the
individual datasets in Table III:

1) 2D Halo (4 datasets)
2) 3D Halo (4 datasets)
3) Sub A2A (4 datasets)
4) Kernels (combination of (1), (2), and (3), 12 datasets)
5) MILC (2 datasets)
6) pF3D (2 datasets)
7) Apps (combination of (5) and (6), 4 datasets)
8) All (all 16 datasets added together)

The goal is to identify a common set of features that might
be relevant across multiple datasets. Figure 8 presents the
feature ranks obtained using the technique described above for
each of the larger datasets. Note that the importance/rank of
each feature is obtained by first identifying the smallest subset
of important features for each dataset and then performing
another cycle of training and testing to obtain the relative
importance of the features in this identified subset. The marker
colors for each row/dataset are scaled independently (maroon/
red is high and yellow is low).

Fig. 8. Comparison of the feature ranks obtained using the feature selection
technique applied to the eight larger datasets. Note that the marker colors for
each row are scaled independently (maroon/red is high and yellow is low).

0.5

0.6

0.7

0.8

0.9

1.0

Kernels MILC pF3D

R
C

C
RCC comparison for different feature subsets

All features
Expert selected

Feature subset for Kernels
Feature subset for Apps

Feature subset for All

0.5

0.6

0.7

0.8

0.9

1.0

Kernels MILC pF3D

R
2

R2 comparison for different feature subsets

Fig. 9. Prediction performance of the features selected using the proposed quantile analysis on different datasets. RCC and R2 values are averages over 50
random splits of the datasets into training and testing sets.

We can make a few important observations from Figure 8.
The markers in the row for the All dataset show that the
“stalls” features are the most important. The stalls group
indicates scenarios in which a network packet has to wait in
the receive buffer. The wait could either be on an intermediate
node because the next link is busy or on the destination node
because the node is not able to consume the received packets
at the same rate as they arrive. Stallspp refers to the number
of stalls encountered on a link per packet. The high ranks of
these features suggest that the receive buffers on the nodes are
one of the most important causes of network congestion.

The other important feature in the All dataset of Figure 8 is
avg bytes. This refers to the average number of bytes passing
through a network link and is an indicator of the average traffic
on the network. A high rank for this feature suggests that to
mitigate congestion, algorithms and task mappings should aim
to minimize the average load per link. It also indicates that
max bytes or the most overloaded link (often referred to as
a hot-spot) is not a strong determinant of the execution time.
Finally, we note that max inj FIFO or the maximum injection
FIFO length also plays a small role in predicting the execution
time, especially for the production applications.

We can also observe which features are important for a
particular larger dataset using Figure 8. For example, max inj
FIFO is only important for the production applications (MILC
and pF3D) and the Apps and All datasets. Avg stallspp is im-
portant across most datasets but max stallspp is only important
for the production applications and their combinations. Avg
bytes is also important in almost all datasets except Sub A2A
and MILC. Further, it is important to note that a feature might
not show up as important for a dataset in this figure for one of
the following two reasons – either it was less important than
the top five to seven features or another feature that highly
correlates with this feature was in the top list.

In order to evaluate the performance of the relevant feature
subsets obtained using feature selection, we learn regression
functions using the subsets on the following datasets: Kernels,
MILC, and pF3D. In addition, we compare the performance
for these feature subsets with that obtained by using all

nineteen features and an expert selected subset of twelve
features. For the expert selection, we only pick those features
that we believe represent some unique information about the
dataset. We pick one of two features if they are known to be
highly correlated. In each case, we run the GBRT algorithm
with 70% of the data for training and the rest for testing. The
results reported in Figure 9 are obtained by calculating average
RCC and R2 scores over 50 random splits of the datasets into
training and testing sets.

In Figure 9, we observe that if we use the feature subset
from the communication kernels to predict MILC or pF3D,
there is a performance drop. This is also true if we use the
feature subset from the Apps to predict the communication
kernels. This suggests that the communication kernels dataset
has some characteristics that are not well modeled by the
features extracted from the Apps dataset and vice versa.

Nonetheless, the important result in Figure 9 is that us-
ing a feature subset derived from all the datasets, we can
do reasonably good predictions for communication kernels
and production applications. These predictions are close to
predictions obtained using all nineteen features. This subset
of features is: avg bytes, avg bytes AO, #links AO stall, avg
stallspp, max stallspp and max inj FIFO. From these results,
we conclude that the features that are among the primary
root causes of network congestion are (in decreasing order
of importance): the average and maximum lengths of receive
buffers, average load on the network links, and the maximum
length of injection FIFOs on the source node. We also observe
that the maximum load on a link (network hot-spots) and
message dilation or the number of hops a message travels are
lesser indicators of network congestion.

VII. SUMMARY

The ability to predict the performance of communication-
heavy parallel applications without actual execution can be
very useful. This requires understanding which network hard-
ware components affect communication and in turn, perfor-
mance on different interconnection architectures. A better
understanding of the network behavior and congestion can help

in performance tuning through the development of congestion-
avoiding and congestion-minimizing algorithms.

This paper presented a machine learning approach to un-
derstand network congestion on supercomputer networks. We
used regression analysis on communication data and execution
time to find correlations between the two and to learn models
for predicting execution time of new samples. Using a quantile
analysis technique to identify relevant feature subsets, we
were also able to extract the relative importance of different
features and that of the corresponding hardware components
in predicting execution time. This helped us to identify the
primary root causes or culprits behind network congestion,
which is a difficult challenge.

Using our methodology, we obtained prediction scores close
to 1.0 for individual datasets. We were also able to reasonably
predict the execution time on higher node counts using training
data for smaller node counts. We also obtained reasonable
ranking predictions for new applications using datasets based
on communication kernels only. Finally, we identified the hard-
ware components that are primarily responsible for impacting
and hence, predicting the execution time. These are – receive
buffers on intermediate nodes, network links and injection
FIFOs in decreasing order of importance. We also observed
that network hot-spots and dilation or the number of hops
a message travels are lesser indicators of network congestion.
This knowledge gives us a real insight into network congestion
on torus interconnects and can be very useful to network
designers and application developers.

Finally, the prediction techniques presented in this paper
are widely applicable to a variety of scenarios, such as,
(1) creating offline prediction models that can be used for
low overhead tuning decisions to find the best configuration
parameters, (2) predicting the execution time in new setups,
e.g., on a different number of nodes, or different input datasets,
or even for an unknown code, (3) identifying the root causes
of network congestion on different architectures, and (4) gen-
erating task mappings for good performance.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344. This work was
funded by the Laboratory Directed Research and Development
(LDRD) Program at LLNL under project tracking code 13-
ERD-055 (LLNL-CONF-663150). This research used com-
puter time on Livermore Computing’s high performance com-
puting resources, provided under the LDRD Program.

REFERENCES

[1] C. Hyatt and D. P. Agrawal, “Congestion control in the wormhole-routed
torus with clustering and delayed deflection,” in Parallel Computer
Routing and Communication, ser. Lecture Notes in Computer Science,
S. Yalamanchili and J. Duato, Eds. Springer Berlin Heidelberg, 1998,
vol. 1417, pp. 33–38.

[2] A. Bhatele and L. V. Kale, “Quantifying network contention on large
parallel machines,” Parallel Processing Letters, vol. 19, no. 04, pp.
553–572, Dec. 2009. [Online]. Available: http://www.worldscientific.
com/doi/abs/10.1142/S0129626409000419

[3] J. Escudero-Sahuquillo, E. Gran, P. Garcia, J. Flich, T. Skeie, O. Lysne,
F. Quiles, and J. Duato, “Combining congested-flow isolation and injec-
tion throttling in hpc interconnection networks,” in 2011 International
Conference on Parallel Processing (ICPP), Sept 2011, pp. 662–672.

[4] A. Bhatele, E. Bohm, and L. V. Kale, “Optimizing communication for
Charm++ applications by reducing network contention,” Concurrency
and Computation: Practice and Experience, vol. 23, no. 2, pp.
211–222, Feb. 2011. [Online]. Available: http://onlinelibrary.wiley.com/
doi/10.1002/cpe.1637/abstract

[5] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,” in
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. IEEE Computer Society,
Nov. 2013, LLNL-CONF-635776.

[6] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[7] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics
& Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[8] N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, and F. M. Ciorba,
“A learning-based selection for portfolio scheduling of scientific ap-
plications on heterogeneous computing systems,” Parallel and Cloud
Computing, vol. 3, no. 4, pp. 66–81, Oct. 2014.

[9] N. R. Tallent, A. Vishnu, H. Van Dam, J. Daily, D. J. Kerbyson,
and A. Hoisie, “Diagnosing the causes and severity of one-sided
message contention,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP 2015. ACM, 2015, pp. 130–139. [Online]. Available:
http://doi.acm.org/10.1145/2688500.2688516

[10] N. Jain, A. Bhatele, M. P. Robson, T. Gamblin, and L. V. Kale,
“Predicting application performance using supervised learning on com-
munication features,” in ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’13.
IEEE Computer Society, Nov. 2013, LLNL-CONF-635857.

[11] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] C. Bernard, T. Burch, T. A. DeGrand, C. DeTar, S. Gottlieb, U. M.
Heller, J. E. Hetrick, K. Orginos, B. Sugar, and D. Toussaint, “Scaling
tests of the improved Kogut-Susskind quark action,” Physical Review D,
no. 61, 2000.

[13] S. Langer, A. Bhatele, and C. H. Still, “pF3D simulations of
laser-plasma interactions in National Ignition Facility experiments,”
Computing in Science and Engineering, vol. 99, Aug. 2014, lLNL-
JRNL-648736. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/MCSE.2014.79

[14] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W. Draeger,
B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine, V. Pascucci,
M. Schulz, and C. H. Still, “Mapping applications with collectives
over sub-communicators on torus networks,” in Proceedings of the
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. IEEE Computer Society,
Nov. 2012, LLNL-CONF-556491.

[15] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and
R. Tibshirani, The elements of statistical learning. Springer, 2009,
vol. 2, no. 1.

[16] C. M. Bishop et al., Pattern recognition and machine learning. springer
New York, 2006, vol. 1.

[17] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Frontiers in neurorobotics, vol. 7, 2013.

[20] Kendall tau rank correlation coefficient. http://en.wikipedia.org/wiki/
Kendall tau rank correlation coefficient.

